

Comment on "Conditions for Maximum Power Transfer"*

In recent correspondences by Shulman,¹ Castagnetto and Matheau,² there are discussions of the conditions for maximum power transfer. In Shulman's notation, the source impedance is $Z_s = R_s + jX_s = R_s(1 + jx_s)$, the load impedance is $Z = R + jX = R_s(r + jx)$, P is the power delivered to the load, and P_0 is the maximum power available from the source. A very simple procedure is to plot $Z' = r + j(x + x_s)$ on a Smith Chart. Maximum power transfer occurs when Z' is the closest to the center of the chart. In other words, maximum power transfer occurs when

$$\Gamma = \left| \frac{r + j(x + x_s) - 1}{r + j(x + x_s) + 1} \right|$$

is minimized, because

$$1 - \Gamma^2 = P/P_0.$$

H. F. MATHIS
North American Aviation, Inc.
Columbus, Ohio

* Received June 17, 1963.

¹ Carl Shulman, "Conditions for maximum power transfer," *IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES (Correspondence)*, vol. MTT-9, pp. 453-454, September, 1961.

² L. Castagnetto, J. C. Matheau, and Carl Shulman, "Some remarks concerning 'Conditions for maximum power transfer,'" *IEEE TRANS. ON MICROWAVE THEORY AND TECHNIQUES (Correspondence)*, vol. MTT-11, pp. 153-154; March, 1963.

Graphical Analysis of Q Circuits*

The parameters of a resonator which is coupled to a transmission line can be determined in a straightforward way from the measurement of the reflectance on the line.¹⁻⁵ However, graphical methods of evaluating the resonator parameters are based on the assumption that the inductance of the coupling loop can be neglected in comparison with the involved impedances. A simple method of graphical evaluation of the resonator parameters which takes into account the coupling inductance too will be described here.

The need for such a method arose in the course of the development of a wavemeter which had a resistance R_L in series with the coupling loop. The input reflectance in the detuned short position is shown on Fig. 1. It is seen that the Q circle does not have its center on the real axis.

* Received May 20, 1963.

¹ L. R. Walker, "Output circuits," in "Microwave Magnetrons," G. B. Collins, Ed., McGraw-Hill Book Co., Inc., New York, N. Y., ch. 5, pp. 171-187; 1948.

² L. Malter and G. R. Brewer, "Microwave Q measurements in the presence of series losses," *J. Appl. Phys.*, vol. 20, pp. 918-925; October, 1949.

³ E. L. Ginzton, "Microwave Measurements," McGraw-Hill Book Co., Inc., New York, N. Y.; 1957. See especially, ch. 9.

⁴ A. Singh, "An improved method for the determination of Q of cavity resonators," *IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES*, vol. MTT-6, pp. 155-160; April, 1958.

⁵ E. L. Ginzton, "Microwave Q measurements in the presence of coupling losses," *IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES*, vol. MTT-6 pp. 383-389 October, 1958.

Fig. 2 shows the equivalent circuit for the case under investigation. The position of the minimum voltage for the detuned resonator is marked with $b-b$, the detuned short position. The reflectances measured on the slotted line in the reference plane $b-b$ produce the Q circle on the Smith Chart, denoted C_1 in Fig. 3. Its radius r_1 can be measured on the Γ scale which is usually added to the Smith Chart. The center of the Q circle is denoted S_1 while S_0 denotes the center of the Smith Chart.

The first step in the graphical analysis under consideration is to determine the circle C_2 which tangentially touches the unit circle (circumference of the Smith Chart) and the Q circle in the point F_∞ . The easiest way of locating the circle C_2 is by simple trial. The straight line through points F_∞ and S_1 is drawn and the point S_2 is located, which makes $F_\infty S_2 = S_2 A$. A is the touching point of the circle C_2 with the unit circle. The circle C_2 with the radius

r_2 is thus obtained. The series resistance R_1 in the coupling circuit is given by the relation

$$R_1 = R_K \left(\frac{1}{r_2} - 1 \right), \quad (1)$$

where R_K denotes the characteristic resistance of the slotted line.

The coupling coefficient κ is here defined as the ratio of coupled resistance to cavity resistance. This corresponds to the situation described by Ginzton³ in his Figure 9.3d. The coupling coefficient can be determined from the radii r_1 and r_2

$$\kappa = \frac{r_1}{r_2 - r_1}. \quad (2)$$

Note that it is irrelevant whether the Q circle is overcoupled or undercoupled. All the relations given here are valid for both cases.

The straight line $f-f$ drawn through S_2 perpendicularly to the line $F_\infty S_1$ is provided with a linear frequency scale. The particular frequency f_0 is determined by projecting on the scale $f-f$ the point F_0 out of the point F_∞ . The frequency f_0 , corresponding to F_0 , is the resonant frequency of the loaded resonator.

By drawing two straight lines through the point F_∞ at 45° to the line $F_\infty S_1$, one obtains the points F_1 and F_2 . The corresponding frequencies f_1 and f_2 are then determined on the frequency scale $f-f$. The Q value of the loaded resonator follows from the familiar expression

$$Q_L = \frac{f_0}{f_2 - f_1}. \quad (3)$$

For the sake of clarity, the rest of the analysis is explained on Fig. 4. From point A two straight lines are drawn at 45° to the line $\overline{AS_0}$, and a third line perpendicular to $\overline{AS_0}$. These three straight lines are denoted l_3 , l_4 and l_5 . The symmetry line between points F_∞ and A is drawn afterwards. The

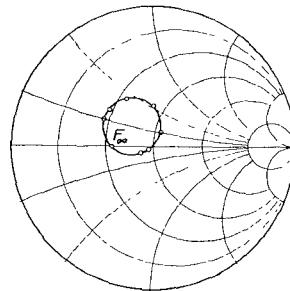


Fig. 1—Typical plot of the input reflectance of a resonator with coupling losses. F_∞ is the reflectance of the detuned resonator.

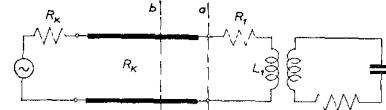


Fig. 2—Equivalent circuit of a resonator with coupling losses. $a-a$ is the input terminals plane, $b-b$ is the detuned short plane.

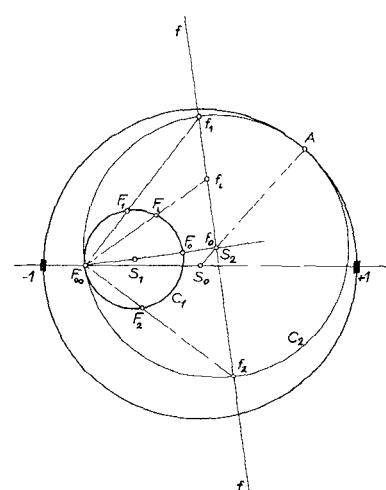


Fig. 3—Input reflectance in the detuned short plane (circle C_1). The radii of circles C_1 and C_2 determine the coupling coefficient. Also shown is the construction of a linear frequency scale.

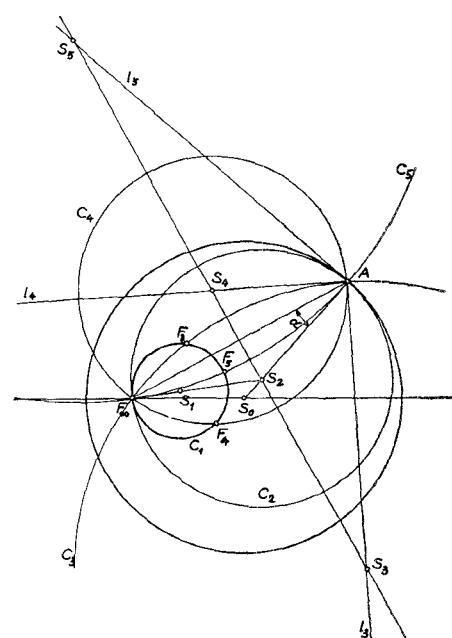


Fig. 4—The determination of the Q_0 and f_0 .